Перевод: с русского на английский

с английского на русский

параметры модели

  • 1 параметры модели

    1) Geophysics: model parameters
    2) Makarov: model properties

    Универсальный русско-английский словарь > параметры модели

  • 2 параметры модели

    Русско-английский физический словарь > параметры модели

  • 3 параметры, рассчитанные по модели

    Параметры, рассчитанные по модели-- A comparison of simulation predicted parameters and experimentally determined values is shown in Fig. for variable inlet temperature.

    Русско-английский научно-технический словарь переводчика > параметры, рассчитанные по модели

  • 4 параметр модели

    1. parameter

     

    параметр модели
    Относительно постоянный показатель, характеризующий моделируемую систему (элемент системы) или процесс. Параметры указывают, чем данная система (процесс) отлична от других. Поэтому, строго говоря, они могут быть не только количественными (т.е. показателями), но и качественными (например, некоторыми свойствами объекта, его названием и т.п.). В научной литературе распространено следующее определение: основные параметры системы — это такие ее характеристики, которые изменяются лишь тогда, когда меняется сама система, т.е. для данной системы — это константы. Однако оно не вполне точно. На самом деле параметры модели могут быть переменными величинами, изменяющимися относительно медленно; для упрощения расчетов они принимаются на какой-то не очень длительный период за постоянные. Иногда приходится включать в модель коэффициенты изменения параметров за изучаемый срок. Это усложняет расчеты по модели, зато дает более точные результаты. Термин «экономические параметры» употребляется и в более конкретном смысле как обозначение измеримых величин, которые характеризуют структуру народного хозяйства, его состояние, уровень экономического развития и сам процесс развития. В этом смысле экономическими параметрами можно назвать, например, уровень и темп роста национального дохода, соотношение темпов роста промышленности и сельского хозяйства, численность населения и т.д. Параметры составляют каркас каждой экономико-математической модели. Их выявляют путем статистического изучения экономической действительности. (См. Оценка параметров модели). Например, если изучается расход различных видов материалов в процессе производства, то параметрами будут нормы расхода, устанавливаемые на основе расчетов (технически обоснованные нормы) или же на основе изучения прошлого опыта (опытно-статистические нормы). Соответствующие величины (параметры) можно включить в модель для прогноза или плана производства на будущее. Параметры экономико-математических моделей подразделяются на два вида: а) описывающие поведение системы и б) управляющие, среди которых особенно важны инструментальные, и на три группы: а) параметры среды; б) параметры управляющих воздействий; в) параметры внутреннего состояния системы. С точки зрения экономической природы модели особое значение имеют технологические параметры (например, параметры производственной функции) и поведенческие параметры (характеризующие, например, реакцию работника на стимулирующее воздействие). Ряд авторов относит к П.м. неуправляемые переменные. И вообще, в литературе термины «П.м.» и «переменная модели» часто употребляются в приложении к одним и тем же величинам. Это зависит от постановки задачи, однако, нередко и от нечеткости разграничения самих этих понятий.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > параметр модели

  • 5 оценка параметров модели

    1. parameter estimation

     

    оценка параметров модели
    параметризация модели

    1. Этап построения экономико-математической модели, например, эконометрической модели; заключается в определении численных значений существенных параметров модели, выявленных на предварительных этапах анализа исследуемого объекта или процесса (см. Идентификация объекта, Спецификация модели). Параметры модели численно оцениваются по данным, полученным путем экономического эксперимента и статистического наблюдения — чаще всего методом наименьших квадратов, методом максимального правдоподобия, а также некоторыми другими статистическими методами. На этой основе можно производить различные операции над моделью, например, строить прогнозы поведения системы. 2. Количественное значение оцененных параметров.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > оценка параметров модели

  • 6 управляющие параметры в экономике

    1. economic control parameters

     

    управляющие параметры в экономике
    инструментальные переменные

    (параметры активного воздействия, ключевые стратегические параметры, контролирующие операторы) - те экономические параметры, с помощью сознательного изменения которых создается возможность менять ход и направление экономических процессов. Обычно управляющие параметры делят на три группы: стабилизаторы (с их помощью пытаются ограничивать конъ­юнк­турные колебания, т.е. кризисы), стимуляторы (предназначенные для сохранения или повышения темпов экономического роста) и регуляторы (их функция — поддерживать сбалансированность экономики). [1] В литературе часто не различаются термины «параметр модели» и «переменная модели». См. об этом подробнее в соответствующих статьях.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > управляющие параметры в экономике

  • 7 демографические модели

    1. demographic models

     

    демографические модели
    Математические модели, описывающие процессы воспроизводства и миграции населения. В частности: а) модели, в которых важную роль играет возрастная структура населения — другие его параметры рассматриваются как функции этой структуры («демометрические функции»); б) демографические таблицы (таблицы рождаемости, смертности, плодовитости, количества браков и т.д.); в) модели воспроизводства населения, объединяющие таблицы смертности и плодовитости, которые широко применяются для прогнозных и аналитических расчетов. Для изучения режима воспроизводства населения в зависимости от различных факторов используется также идеализированная модель «стабильного населения». Получаемые с ее помощью данные могут вводиться в экономические модели (например, в модели теории производственных функций).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > демографические модели

  • 8 приведенная форма модели

    1. reduced form of an econometric model

     

    приведенная форма модели
    Такая форма представления эконометрической модели, в которой каждая из текущих эндогенных переменных непосредственно выражена как функция предопределенных переменных. Иными словами, каждое уравнение здесь представляет собой решение системы уравнений модели, заданной в структурной форме, относительно каждой текущей эндогенной переменной. (Число уравнений модели равно числу текущих эндогенных переменных.) Структурная форма модели преобразуется в приведенную путем последовательных подстановок, и все коэффициенты (параметры) последней представляют собой некоторые функции первоначальных коэффициентов структурной формы модели.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > приведенная форма модели

  • 9 критические параметры

    1. threshold parameters

     

    критические параметры
    1. В динамической модели народного хозяйства — переменные, значения которых должны поддерживаться в заданных пределах (например, показатели затрат на оборону, внешней торговли). 2. В прогнозах и программах развития — общий уровень цен, размеры безработицы и другие подобные показатели, рассматриваемые как «пороговые» условия устойчивости самой экономической системы.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > критические параметры

  • 10 вводные параметры

    General subject: inputs (напр, модели)

    Универсальный русско-английский словарь > вводные параметры

  • 11 параметр

    м.
    - адиабатический параметр
    - активационный параметр
    - аффинный параметр
    - безразмерный параметр
    - бесконечно малый параметр
    - векторный параметр порядка
    - внешний параметр состояния
    - внешний термодинамический параметр
    - внутренний параметр состояния
    - внутренний термодинамический параметр
    - временной параметр
    - входной параметр
    - выходной параметр
    - газовый параметр
    - геодезический параметр
    - геометрический параметр кривизны
    - геометрический параметр
    - геоэффективные параметры
    - гибридный параметр
    - двухкомпонентный параметр порядка
    - длиннопериодический параметр порядка
    - зеркальный параметр
    - интенсивный термодинамический параметр
    - квантованный параметр
    - киральный параметр порядка
    - коллективный параметр
    - конструктивные параметры
    - конфокальный параметр
    - короткопериодический параметр порядка
    - критические параметры газового потока
    - кулоновский параметр
    - локальный параметр обмена
    - локальный параметр
    - макроскопический параметр Грюнайзена
    - макроскопический параметр
    - малый параметр
    - масштабный параметр
    - материальный параметр
    - матричный параметр
    - микроскопический параметр Грюнайзена
    - многокомпонентный параметр порядка
    - начальные параметры
    - независимый параметр Лагранжа
    - нелинейный параметр
    - нулевой параметр
    - обобщённый параметр
    - однодолинный параметр порядка
    - однокомпонентный параметр порядка
    - оптимальный параметр
    - параметр адиабатичности
    - параметр анизотропии
    - параметр беспорядка
    - параметр ближнего порядка
    - параметр Блоха - Бломбергена
    - параметр Будкера
    - параметр Вайскопфа
    - параметр Вольфенштейна
    - параметр вырождения
    - параметр геометрической характеристики винта
    - параметр Гинзбурга - Ландау
    - параметр группирования
    - параметр Грюнайзена
    - параметр дальнего порядка Брэгга - Вильямса
    - параметр дальнего порядка
    - параметр Де Бура
    - параметр делимости
    - параметр деформации Лоде
    - параметр деформации
    - параметр динамики дислокаций
    - параметр дрейфовой оболочки
    - параметр замедления
    - параметр заторможенного состояния
    - параметр затухания
    - параметр захвата
    - параметр зеркальности
    - параметр идеальности
    - параметр квадрупольной деформации
    - параметр квазиклассичности
    - параметр конверсии
    - параметр кривизны
    - параметр кривой опорной поверхности
    - параметр кристаллической решётки
    - параметр Ландау - Лифшица
    - параметр Лармора
    - параметр Латтинжера
    - параметр магнитного взаимодействия
    - параметр Мак-Илвейна
    - параметр матрицы рассеяния
    - параметр Месси
    - параметр муаровой полосы
    - параметр нагружения
    - параметр Надаи - Лоде
    - параметр насыщения
    - параметр неадиабатичности
    - параметр нестинга
    - параметр обмена
    - параметр обменного взаимодействия
    - параметр обрезания
    - параметр орбиты
    - параметр ориентационного порядка
    - параметр Паризи
    - параметр положения
    - параметр порядка
    - параметр потока
    - параметр разброса
    - параметр развязывания
    - параметр растворимости
    - параметр решётки
    - параметр Рэлея
    - параметр связи
    - параметр согласования
    - параметр состояния
    - параметр соударения
    - параметр среды
    - параметр статистической флуктуации
    - параметр Стокса
    - параметр столкновения
    - параметр Стонера
    - параметр стохастичности
    - параметр удара
    - параметр удержания
    - параметр ускорителя
    - параметр Фейнберга
    - параметр Френеля
    - параметр Холла
    - параметр шероховатости поверхности
    - параметр шкалы
    - параметр Эдвардса - Андерсона
    - параметр элементарной ячейки
    - параметр ячейки
    - параметры модели
    - параметры пара
    - параметры потенциальной ямы
    - параметры реактора
    - параметры реакторной решётки
    - параметры синхротрона с сильной фокусировкой
    - параметры системы
    - параметры торможения
    - параметры ядерного уровня
    - плазменный параметр взаимодействия
    - плазменный параметр
    - поверхностный параметр порядка
    - подгоночный параметр
    - позиционный параметр
    - постоянные параметры потока на входе
    - приведённый термодинамический параметр
    - прицельный параметр захвата
    - прицельный параметр
    - произвольный параметр
    - рабочие параметры
    - размерный параметр
    - распределённые параметры
    - расчётный параметр
    - релятивистский параметр
    - свободный параметр
    - скалярный параметр порядка
    - скрытый параметр
    - случайный параметр
    - сосредоточенный параметр
    - спектральный параметр
    - спиновый параметр
    - статистический параметр
    - структурно-чувствительный параметр
    - структурный параметр
    - струнный параметр
    - термодинамический параметр состояния
    - термодинамический параметр
    - уточнённые позиционные параметры
    - феноменологический параметр
    - ферми-жидкостный параметр
    - характеристический параметр
    - характерный параметр
    - экстенсивный термодинамический параметр
    - эффективный параметр рассеяния

    Русско-английский физический словарь > параметр

  • 12 система

    1. system
    2. solar-plus-supplementary system
    3. en



     

    система
    Группа взаимодействующих объектов, выполняющих общую функциональную задачу. В ее основе лежит некоторый механизм связи.
    [ ГОСТ Р МЭК 61850-5-2011]

    система

    Набор элементов, которые взаимодействуют в соответствии с проектом, в котором элементом системы может быть другая система, называемая подсистемой; система может быть управляющей системой или управляемой системой и включать аппаратные средства, программное обеспечение и взаимодействие с человеком.
    Примечания
    1 Человек может быть частью системы. Например, человек может получать информацию от программируемого электронного устройства и выполнять действие, связанное с безопасностью, основываясь на этой информации, либо выполнять действие с помощью программируемого электронного устройства.
    2 Это определение отличается от приведенного в МЭС 351-01-01.
    [ ГОСТ Р МЭК 61508-4-2007]

    система
    Множество (совокупность) материальных объектов (элементов) любой, в том числе различной физической природы, а также информационных объектов, взаимосвязанных и взаимодействующих между собой для достижения общей цели.
    [ ГОСТ Р 43.0.2-2006]

    система
    Совокупность элементов, объединенная связями между ними и обладающая определенной целостностью.
    [ ГОСТ 34.003-90]

    система
    Совокупность взаимосвязанных и взаимодействующих элементов.
    [ ГОСТ Р ИСО 9000-2008]

    система

    -
    [IEV number 151-11-27]

    система
    Набор связанных элементов, работающих совместно для достижения общей Цели. Например: • Компьютерная система, состоящая из аппаратного обеспечения, программного обеспечения и приложений. • Система управления, состоящая из множества процессов, которые планируются и управляются совместно. Например, система менеджмента качества. • Система управления базами данных или операционная система, состоящая из множества программных модулей, разработанных для выполнения набора связанных функций.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    система
    Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство. Следует отметить, что это определение (взятое нами из Большой Советской Энциклопедии) не является ни единственным, ни общепризнанным. Есть десятки определений понятия “С.”, которые с некоторой условностью можно поделить на три группы. Определения, принадлежащие к первой группе, рассматривают С. как комплекс процессов и явлений, а также связей между ними, существующий объективно, независимо от наблюдателя. Его задача состоит в том, чтобы выделить эту С. из окружающей среды, т.е. как минимум определить ее входы и выходы (тогда она рассматривается как “черный ящик”), а как максимум — подвергнуть анализу ее структуру (произвести структуризацию), выяснить механизм функционирования и, исходя из этого, воздействовать на нее в нужном направлении. Здесь С. — объект исследования и управления. Определения второй группы рассматривают С. как инструмент, способ исследования процессов и явлений. Наблюдатель, имея перед собой некоторую цель, конструирует (синтезирует) С. как некоторое абстрактное отображение реальных объектов. При этом С. (“абстрактная система”) понимается как совокупность взаимосвязанных переменных, представляющих те или иные свойства, характеристики объектов, которые рассматриваются в данной С. В этой трактовке понятие С. практически смыкается с понятием модели, и в некоторых работах эти два термина вообще употребляются как взаимозаменяемые. Говоря о синтезе С., в таких случаях имеют в виду формирование макромодели, анализ же С. совпадает в этой трактовке с микромоделированием отдельных элементов и процессов. Третья группа определений представляет собой некий компромисс между двумя первыми. С. здесь — искусственно создаваемый комплекс элементов (например, коллективов людей, технических средств, научных теорий и т.д.), предназначенный для решения сложной организационной, экономической, технической задачи. Следовательно, здесь наблюдатель не только выделяет из среды С. (и ее отдельные части), но и создает, синтезирует ее. С. является реальным объектом и одновременно — абстрактным отображением связей действительности. Именно в этом смысле понимает С. наука системотехника. Между этими группами определений нет непроходимых границ. Во всех случаях термин “С.” включает понятие о целом, состоящем из взаимосвязанных, взаимодействующих, взаимозависимых частей, причем свойства этих частей зависят от С. в целом, свойства С. — от свойств ее частей. Во всех случаях имеется в виду наличие среды, в которой С. существует и функционирует. Для исследуемой С. среда может рассматриваться как надсистема, соответственно, ее части — как подсистемы, а также элементы С., если их внутренняя структура не является предметом рассмотрения. С. делятся на материальные и нематериальные. К первым относятся, например, железная дорога, народное хозяйство, ко вторым — С. уравнений в математике, математика как наука, далее — С. наук. Автоматизированная система управления включает как материальные элементы (ЭВМ, документация, люди), так и нематериальные — математические модели, знания людей. Разделение это тоже неоднозначно: железную дорогу можно рассматривать не только как материальную С., но и как нематериальную С. взаимосвязей, соотношений, потоков информации и т.д. Закономерности функционирования систем изучаются общей теорией систем, оперирующей понятием абстрактной С. Наибольшее значение среди абстрактных С. имеют кибернетические С. Есть два понятия, близкие понятию С.: комплекс, совокупность (множество объектов). Они, однако, не тождественны ему, как нередко утверждают. Их можно рассматривать как усеченные, неполные понятия по отношению к С.: комплекс включает части, не обязательно обладающие системными свойствами (в том смысле, как это указано выше), но эти части сами могут быть системами, и элементы последних такими свойствами по отношению к ним способны обладать. Совокупность же есть множество элементов, не обязательно находящихся в системных отношениях и связях друг с другом. В данном словаре мы стремимся по возможности последовательно различать понятия С. и модели, рассматривая С. как некий объект (реальной действительности или воображаемый — безразлично), который подвергается наблюдению и изучению, а модель — как средство этого наблюдения и изучения. Разумеется, и модель, если она сама оказывается объектом наблюдения и изучения, в свою очередь рассматривается как С. (в частности, как моделируемая С.) — и так до бесконечности. Все это означает, что такие, например, понятия, как переменная или параметр, мы (в отличие от многих авторов) относим не к С., а к ее описанию, т.е. к модели (см. Параметры модели, Переменная модели), численные же их значения, характеризующие С., — к С. (например, координаты С.). • Системы математически описываются различными способами. Каждая переменная модели, выражающая определенную характеристику С., может быть задана множеством конкретных значений, которые эта переменная может принимать. Состояние С. описывается вектором (или кортежем, если учитываются также величины, не имеющие численных значений), каждая компонента которого соответствует конкретному значению определенной переменной. С. в целом может быть описана соответственно множеством ее состояний. Например, если x = (1, 2, … m) — вектор существенных переменных модели, каждая из которых может принять y значений (y = 1, 2, …, n), то матрица S = [ Sxy ] размерностью m ? n представляет собой описание данной С. Широко применяется описание динамической С. с помощью понятий, связанных с ее функционированием в среде. При этом С. определяется как три множества: входов X, выходов Y и отношений между ними R. Полученный “портрет системы” может записываться так: XRY или Y = ®X. Аналитическое описание С. представляет собой систему уравнений, характеризующих преобразования, выполняемые ее элементами и С. в целом в процессе ее функционирования: в непрерывном случае применяется аппарат дифференциальных уравнений, в дискретном — аппарат разностных уравнений. Графическое описание С. чаще всего состоит в построении графа, вершины которого соответствуют элементам С., а дуги — их связям. Существует ряд классификаций систем. Наиболее известны три: 1) Ст. Бир делит все С. (в природе и обществе), с одной стороны, на простые, сложные и очень сложные, с другой — на детерминированные и вероятностные; 2) Н.Винер исходит из особенностей поведения С. (бихевиористский подход) и строит дихотомическую схему: С., характеризующиеся пассивным и активным поведением; среди последних — нецеленаправленным (случайным) и целенаправленным; в свою очередь последние подразделяются на С. без обратной связи и с обратной связью и т.д.; 3) К.Боулдинг выделяет восемь уровней иерархии С., начиная с простых статических (например, карта земли) и простых кибернетических (механизм часов), продолжая разного уровня сложности кибернетическими С., вплоть до самых сложных — социальных организаций. Предложены также классификации по другим основаниям, в том числе более частные, например, ряд классификаций С. управления. См. также: Абстрактная система, Адаптирующиеся, адаптивные системы, Большая система, Вероятностная система, Выделение системы, Входы и выходы системы, Детерминированная система, Динамическая система, Дискретная система, Диффузная система, Замкнутая (закрытая) система, Иерархическая структура, Имитационная система, Информационная система, Информационно-развивающаяся система, Кибернетическая система, Координаты системы, Надсистема, Нелинейная система, Непрерывная система, Открытая система, Относительно обособленная система, Память системы, Подсистема, Портрет системы, Разомкнутая система, Рефлексная система, Решающая система, Самонастраивающаяся система, Самообучающаяся система, Самоорганизующаяся система, Сложная система, Состояние системы, Статическая система, Стохастическая система, Структура системы, Структуризация системы, Управляющая система, Устойчивость системы, Целенаправленная система, Экономическая система, Функционирование экономической системы..
    [ http://slovar-lopatnikov.ru/]

    EN

    system
    set of interrelated elements considered in a defined context as a whole and separated from their environment
    NOTE 1 – A system is generally defined with the view of achieving a given objective, e.g. by performing a definite function.
    NOTE 2 – Elements of a system may be natural or man-made material objects, as well as modes of thinking and the results thereof (e.g. forms of organisation, mathematical methods, programming languages).
    NOTE 3 – The system is considered to be separated from the environment and the other external systems by an imaginary surface, which cuts the links between them and the system.
    NOTE 4 – The term "system" should be qualified when it is not clear from the context to what it refers, e.g. control system, colorimetric system, system of units, transmission system.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    system
    A number of related things that work together to achieve an overall objective. For example: • A computer system including hardware, software and applications • A management system, including the framework of policy, processes, functions, standards, guidelines and tools that are planned and managed together – for example, a quality management system • A database management system or operating system that includes many software modules which are designed to perform a set of related functions.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    FR

    système, m
    ensemble d'éléments reliés entre eux, considéré comme un tout dans un contexte défini et séparé de son environnement
    NOTE 1 – Un système est en général défini en vue d'atteindre un objectif déterminé, par exemple en réalisant une certaine fonction.
    NOTE 2 – Les éléments d'un système peuvent être aussi bien des objets matériels, naturels ou artificiels, que des modes de pensée et les résultats de ceux-ci (par exemple des formes d'organisation, des méthodes mathématiques, des langages de programmation).
    NOTE 3 – Le système est considéré comme séparé de l'environnement et des autres systèmes extérieurs par une surface imaginaire qui coupe les liaisons entre eux et le système.
    NOTE 4 – Il convient de qualifier le terme "système" lorsque le concept ne résulte pas clairement du contexte, par exemple système de commande, système colorimétrique, système d'unités, système de transmission.
    Source: 351-01-01 MOD
    [IEV number 151-11-27]

    Тематики

    EN

    DE

    FR

    4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.

    Примечание 1 - Система может рассматриваться как продукт или предоставляемые им услуги.

    Примечание 2 - На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» может заменяться контекстно-зависимым синонимом, например, «самолет», хотя это может впоследствии затруднить восприятие системных принципов.

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.17 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей.

    Примечания

    1. Система может рассматриваться как продукт или как совокупность услуг, которые она обеспечивает.

    2. На практике интерпретация данного термина зачастую уточняется с помощью ассоциативного существительного, например, система самолета. В некоторых случаях слово «система» может заменяться контекстным синонимом, например, самолет, хотя это может впоследствии затруднять восприятие системных принципов.

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    4.44 система (system): Комплекс процессов, технических и программных средств, устройств, обслуживаемый персоналом и обладающий возможностью удовлетворять установленным потребностям и целям (3.31 ГОСТ Р ИСО/МЭК 12207).

    Источник: ГОСТ Р ИСО/МЭК 15910-2002: Информационная технология. Процесс создания документации пользователя программного средства оригинал документа

    3.31 система (system): Комплекс, состоящий из процессов, технических и программных средств, устройств и персонала, обладающий возможностью удовлетворять установленным потребностям или целям.

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.36 система (system): Совокупность взаимосвязанных и взаимодействующих объектов. [ ГОСТ Р ИСО 9000, статья 3.2.1]

    Источник: ГОСТ Р 51901.6-2005: Менеджмент риска. Программа повышения надежности оригинал документа

    3.2 система (system): Совокупность взаимосвязанных и взаимодействующих элементов. [ ГОСТ Р ИСО 9000 - 2001]

    Примечания

    1 С точки зрения надежности система должна иметь:

    a) определенную цель, выраженную в виде требований к функционированию системы;

    b) заданные условия эксплуатации.

    2 Система имеет иерархическую структуру.

    Источник: ГОСТ Р 51901.5-2005: Менеджмент риска. Руководство по применению методов анализа надежности оригинал документа

    3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ Р ИСО 9000-2008: Системы менеджмента качества. Основные положения и словарь оригинал документа

    3.7 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.

    Примечания

    1 Применительно к надежности система должна иметь:

    a) определенные цели, представленные в виде требований к ее функциям;

    b) установленные условия функционирования;

    c) определенные границы.

    2 Структура системы является иерархической.

    Источник: ГОСТ Р 51901.12-2007: Менеджмент риска. Метод анализа видов и последствий отказов оригинал документа

    3.2.1 система (en system; fr systéme): Совокупность взаимосвязанных или взаимодействующих элементов.

    Источник: ГОСТ Р ИСО 9000-2001: Системы менеджмента качества. Основные положения и словарь оригинал документа

    2.39 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    3.20 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.

    (МЭК 61513, статья 3.61)

    Источник: ГОСТ Р МЭК 61226-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Классификация функций контроля и управления оригинал документа

    3.61 система (system): Конфигурация взаимодействующих в соответствии с проектом составляющих, в которой элемент системы может сам представлять собой систему, называемую в этом случае подсистемой.

    [МЭК 61508-4, пункт 3.3.1, модифицировано]

    Примечание 1 - См. также «система контроля и управления».

    Примечание 2 - Системы контроля и управления следует отличать от механических систем и электрических систем АС.

    Источник: ГОСТ Р МЭК 61513-2011: Атомные станции. Системы контроля и управления, важные для безопасности. Общие требования оригинал документа

    3.2.1 система (system): Совокупность взаимосвязанных и взаимодействующих элементов.

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    2.34 система (system): Специфическое воплощение ИТ с конкретным назначением и условиями эксплуатации.

    [ИСО/МЭК 15408-1]

    а) комбинация взаимодействующих компонентов, организованных для достижения одной или нескольких поставленных целей.

    [ИСО/МЭК 15288]

    Примечания

    1 Система может рассматриваться как продукт или совокупность услуг, которые она обеспечивает.

    [ИСО/МЭК 15288]

    2 На практике интерпретация данного зачастую уточняется с помощью ассоциативного существительного, например, «система самолета». В некоторых случаях слово «система» допускается заменять, например, контекстным синонимом «самолет», хотя это может впоследствии затруднить восприятие системных принципов.

    [ИСО/МЭК 15288]

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    3.34 система (system):

    Совокупность связанных друг с другом подсистем и сборок компонентов и/или отдельных компонентов, функционирующих совместно для выполнения установленной задачи или

    совокупность оборудования, подсистем, обученного персонала и технических приемов, обеспечивающих выполнение или поддержку установленных функциональных задач. Полная система включает в себя относящиеся к ней сооружения, оборудование, подсистемы, материалы, обслуживание и персонал, необходимые для ее функционирования в той степени, которая считается достаточной для выполнения установленных задач в окружающей обстановке.

    Источник: ГОСТ Р 51317.1.5-2009: Совместимость технических средств электромагнитная. Воздействия электромагнитные большой мощности на системы гражданского назначения. Основные положения оригинал документа

    3.1.13 система, использующая солнечную и дополнительную энергию (solar-plus-supplementary system): Система солнечного теплоснабжения, использующая одновременно источники как солнечной, так и резервной энергии и способная обеспечить заданный уровень теплоснабжения независимо от поступления солнечной энергии.

    Источник: ГОСТ Р 54856-2011: Теплоснабжение зданий. Методика расчета энергопотребности и эффективности системы теплогенерации с солнечными установками оригинал документа

    3.2.6 система (system): Совокупность взаимосвязанных или взаимодействующих элементов.

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    3.12 система (system): Совокупность взаимосвязанных и взаимодействующих элементов

    [ ГОСТ Р ИСО 9000-2008, ст. 3.2.1]

    Источник: Р 50.1.069-2009: Менеджмент риска. Рекомендации по внедрению. Часть 2. Определение процесса менеджмента риска

    Русско-английский словарь нормативно-технической терминологии > система

  • 13 гравитационная модель

    1. gravity model

     

    гравитационная модель
    Модель взаимодействия между пространственными объектами (городами, регионами, странами) в региональном анализе и пространственном анализе экономики. В различных модификациях такие же модели используются при исследовании процессов урбанизации, размещения промышленности, экспортно-импортных взаимосвязей, миграции населения. Общая черта этих моделей заключается в том, что сила взаимодействия (интенсивность потоков) в них зависит от значения (величины) объектов и расстояния между ними. Соответственно, общая форма Г.м. такова: где Iij — объем взаимодействия между объектами i и j; A — коэффициент соответствия; P — некоторая мера значения объекта (например, численность населения города i — Pi и города j — Pj); Dij — расстояние между ними; степенные показатели a, b, g — параметры модели. Как легко видеть, приведенная формула аналогична физической формуле притяжения между телами — откуда и название «Г.м.». Например, такие модели применяются при исследовании товарных потоков между парами стран. В них учитываются социально-экономические факторы, определяются экспортные возможности и импортные потребности торговых партнеров, факторы, относящиеся к продвижению товарного потока (расстояние, наличие таможенных барьеров и т.п.). Адекватность Г.м., несомненно, весьма приблизительная. Экономическая обоснованность их применения оспаривается рядом специалистов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > гравитационная модель

  • 14 производственная функция

    1. production function

     

    производственная функция
    Описание возможных вариантов продуктов системы, в зависимости от различных видов исходных компонентов системы
    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    производственная функция
    функция производства
    ПФ

    Экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ применяются для анализа влияния различных сочетаний факторов производства на объем выпуска в определенный момент времени (статический вариант) и для анализа, а также прогнозирования соотношения объемов факторов и объема выпуска в разные моменты времени (динамический вариант) на различных уровнях экономики — от фирмы (предприятия) до народного хозяйства в целом (агрегированная ПФ, в которой «выпуском» служит показатель совокупного общественного продукта или национального дохода и т.п.). В отдельной фирме, корпорации и т.п. ПФ описывает максимальный объем выпуска продукции, которую они в состоянии произвести при каждом сочетании используемых факторов производства. Она может быть представлена группой изоквант, связанных с различными уровнями объема производства. Такой вид ПФ, когда устанавливается зависимость объема производства продукции от наличия или потребления ресурсов, называется функцией выпуска. В частности, широко используются функции выпуска в сельском хозяйстве, где с их помощью изучается влияние на урожайность таких факторов, как, например, разные виды и составы удобрений, методы обработки почвы. Наряду с подобными ПФ используются как бы обратные к ним функции производственных затрат. Они характеризуют зависимость затрат ресурсов от объемов выпуска продукции (строго говоря, они обратны только к ПФ с взаимозаменяемыми ресурсами). Частными случаями ПФ можно считать функцию издержек (связь объема продукции и издержек производства), инвестиционную функцию (зависимость потребных капиталовложений от производственной мощности будущего предприятия) и др. Математически ПФ могут быть представлены в различных формах — от столь простых, как линейная зависимость результата производства от одного исследуемого фактора, до весьма сложных систем уравнений, включающих рекуррентные соотношения, которыми связываются состояния изучаемого объекта в разные периоды времени. Наиболее широко распространены мультипликативные формы представления ПФ. Их преимущество состоит в следующем: если один из сомножителей равен нулю, то результат обращается в нуль. Легко заметить, что это реалистично отражает тот факт, что в большинстве случаев в производстве участвуют все анализируемые первичные ресурсы и без любого из них выпуск продукции оказывается невозможным. В самой общей форме (она называется канонической) эта функция записывается так: или Здесь коэффициент А, стоящий перед знаком умножения, означает размерность, он зависит от избранной единицы измерений затрат и выпуска. Сомножители от первого до n-го могут иметь различное содержание в зависимости от того, какие факторы оказывают влияние на общий результат (выпуск). Например, в ПФ, которая применяется для изучения экономики в целом, можно в качестве результативного показателя принять объем конечного продукта, а сомножителей — численность занятого населения x1, сумму основных и оборотных фондов x2, площадь используемой земли x3. Только два сомножителя у функции Кобба — Дугласа, с помощью которой была сделана попытка оценить связь таких факторов, как труд и капитал, с ростом национального дохода США в 20-30- гг. ХХ века: N = A • L? • K?, где N — национальный доход, L и K — соответственно, объемы приложенного труда и капитала (подробнее см.: Кобба — Дугласа функция). Степенные коэффициенты (параметры) показывают ту долю в приросте конечного продукта, которую вносит каждый из сомножителей (или на сколько процентов возрастет продукт, если затраты соответствующего ресурса увеличить на один процент); они называются коэффициентами эластичности производства относительно затрат соответствующего ресурса. Если сумма коэффициентов составляет единицу, это означает однородность функции: она возрастает пропорционально росту количества ресурсов. Но возможны и такие случаи, когда сумма параметров больше или меньше единицы; это показывает, что увеличение затрат приводит к непропорционально большему или непропорционально меньшему росту выпуска (см. Эффект масштаба). В динамическом варианте применяются разные формы П.Ф. Например (в 2-х-факторном случае): Y(t) = A(t) La(t) Kb(t), где множитель A(t) обычно возрастает во времени, отражая общий рост эффективности производственных факторов в динамике(См. Совокупная факторная продуктивность). Логарифмируя, а затем дифференцируя по t указанную функцию, можно получить соотношения между темпами прироста конечного продукта (национального дохода) и прироста производственных факторов (темпы прироста переменных принято здесь описывать в процентах). Дальнейшая “динамизация” ПФ может заключаться в использовании переменных коэффициентов эластичности. Описываемые ПФ соотношения носят статистический характер, т.е. проявляются только в среднем, в большой массе наблюдений, поскольку реально на результат производства воздействуют не только анализируемые факторы, но и множество неучитываемых. Кроме того, применяемые показатели как затрат, так и результатов неизбежно являются продуктами сложного агрегирования (например, обобщенный показатель трудовых затрат в макроэкономической функции вбирает в себя затраты труда разной производительности, интенсивности, квалификации и т.д.). Особая проблема — учет в макроэкономических ПФ фактора технического прогресса (подробнее см. в статье «Научно-технический прогресс»). С помощью ПФ изучается также эквивалентная взаимозаменяемость факторов производства (см. Эластичность замещения ресурсов), которая может быть либо неизменной, либо переменной (т.е. зависимой от объемов ресурсов). Соответственно функции делят на два вида: с постоянной эластичностью замены, CES (Constant Elasticity of Substitution) и с переменной, VES (Variable Elasticity of Substitution) (см. ниже). На практике применяются три основных метода определения параметров макроэкономических ПФ: на основе обработки временных рядов, на основе данных о структурных элементах агрегатов и о распределении национального дохода. Последний метод называется распределительным. При построении ПФ необходимо избавляться от явлений мультиколлинеарности параметров и автокорреляции — без этого неизбежны грубые ошибки. • Приведем некоторые важные П. ф. (см. также Кобба — Дугласа функция). Линейная производственная функция: P = a1x1 + … + anxn, где a1, … an — оцениваемые параметры модели: здесь факторы производства, замещаемые в любых пропорциях. Производственнаяфункция CES (constant elasticity of substitution): P = A [(1 — a) K-в + aL-в] -c/в, в этом случае эластичность замещения ресурсов не зависит ни от K, ни от L и, следовательно, постоянна: Отсюда и происходит название функции. Функция CES, как и функция Кобба — Дугласа, исходит из допущения о постоянном убывании предельной нормы замещения используемых ресурсов. Между тем, эластичность замещения капитала трудом и наоборот, в функции К-D равная единице, здесь может принимать различные значения, не равные единице, хотя и является постоянной. Наконец, в отличие от функции K-D, логарифмирование функции CES не приводит ее к линейному виду, что вынуждает использовать для оценки параметров более сложные методы нелинейного регрессионного анализа. Производственная функция VES (variable elasticity of substitution) (один из вариантов): P = Aeat ? Ka ? L b ? exp [c (K/L)] Здесь эластичность замещения принимает различные значения в зависимости от уровня капиталовооруженности труда K/L, откуда и происходит название функции. См. также: Взаимозаменяемость ресурсов, Изокоста, Изокванта, Изоклиналь, Кобба — Дугласа функция, Коэффициент эластичности производства, Предельная норма замещения, Предельные издержки, Предельный эффект затрат, Предельный продукт, Факторная производительность (продуктивность), Эластичность замещения ресурсов.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > производственная функция

  • 15 непрерывность

    1. continuity

     

    непрерывность
    Способность системы функционировать без перерывов в обслуживании с заданными рабочими характеристиками.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    непрерывность
    Общее понятие математики и кибернетики, не имеющее, по-видимому, общепринятого определения. В математике непрерывная функция та, значения которой близки, если близки значения аргументов. Для кибернетики здесь важно, что при незначительных изменениях входов системы выходы ее также изменяются незначительно. (См. также Непрерывная система.) Координаты системы и параметры модели, способные принимать любые вещественные значения на том или ином интервале, называются непрерывными. Для экономико-математического моделирования важно, что Н. в каком-то смысле противоположна дискретности. Экономико-математические модели с непрерывным временем — те, переменные которых «пробегают» все возможные значения на временном интервале, в отличие от моделей с дискретным временем, показатели которых изменяются скачками — допустим, с интервалом в месяц, год и т.п. При моделировании часто возникает задача дискретизации непрерывных переменных, в частности, когда надо придать численные значения качественным признакам. Это достигается путем введения разного рода балльных оценок, шкал.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > непрерывность

  • 16 эконометрическая модель

    1. econometric model

     

    эконометрическая модель
    Основное понятие эконометрии, экономико-математическая модель, параметры которой оцениваются с помощью методов математической статистики. Она выступает в качестве средства анализа и прогнозирования конкретных экономических процессов как на макро-, так и на микро-экономическом уровне на основе реальной статистической информации. Наиболее распространены Э.м., представляющие собой системы регрессионных уравнений, в которых отражается зависимость эндогенных величин (искомых) от внешних воздействий (текущих экзогенных величин) в условиях, описываемых оцениваемыми параметрами модели, а также лаговыми переменными (см. Лаг). Кроме регрессионных (как линейных, так и нелинейных) уравнений применяются и другие математико-статистические модели. Э.м. может быть представлена в двух формах: структурной форме модели (см. также Структурные модели) и приведенной форме модели. В наиболее общем виде любую Э.м., построенную в виде системы линейных уравнений, можно записать так: где y — вектор текущих значений эндогенных переменных модели, A — матрица коэффициентов взаимодействий между текущими значениями эндогенных переменных модели; Z — матрица коэффициентов влияния запаздывающих (лаговых) переменных модели на текущие значения эндогенных и моделируемых показателей; C — матрица коэффициентов внешних воздействий; x — вектор значений экзогенных показателей модели; t — индекс временного периода; I — индекс запаздывания (лага); p — продолжительность максимального лага. В литературе подобные системы часто называют системами одновременных уравнений, имея в виду, что здесь зависимая переменная одного уравнения может появляться одновременно в виде переменной (но уже в качестве независимой) в одном или нескольких других уравнениях. В таком случае теряет смысл традиционное различение зависимых и независимых переменных. Вместо этого устанавливается различие между двумя видами переменных. Это, во-первых, совместно зависимые переменные (эндогенные), влияние которых друг на друга должно быть исследовано (матрица A в слагаемом Ay(t) приведенной выше системы уравнений). Во-вторых, предопределенные переменные, которые, как предполагается, оказывают влияние на первые, однако не испытывают их воздействия; это переменные с запаздыванием, т.е. лаговые (второе слагаемое) и определенные вне данной системы уравнений экзогенные переменные. (Экзогенными, например, всегда оказываются показатели климатических условий, если они включаются в модель. В то же время многие экономические переменные в зависимости от задач и структуры модели могут относиться и к эндогенным, и к экзогенным.) Понятие одновременных эконометрических уравнений и методы их решения были впервые предложены норвежским экономистом Т.Хаавельмо, лауреатом Нобелевской премии по экономике. В зависимости от характера ограничений и статистической структуры переменных эконометрических моделей последние классифицируются на пробит-модели, логит-модели, тобит-модели (см. соответств. статьи).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > эконометрическая модель

  • 17 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 18 модель

    Русско-английский научно-технический словарь переводчика > модель

  • 19 метапсихология

    Термин, используемый Фрейдом для обозначения подхода к явлениям, лежащим за пределами сознательных переживаний, буквально — "за психологией" — в том смысле, в котором психология понималась и применялась в его время. Метапсихология представляет высший уровень абстракции в континууме "клиническое наблюдение — психоаналитическая теория" (Waelder, 1962) и служит концептуальным средством установления системы координат для клинических данных и психоаналитических положений более низкого уровня.
    Метапсихология условно представлена пятью широкими системами или подходами: динамическим, экономическим, структурным, генетическим и адаптивным. Первые три принадлежат Фрейду. Последние два имплицитно содержатся в его работах, а также представлены в работах поздних теоретиков психоанализа; Рапапорт и Джилл первыми эксплицитно обозначили их как подходы. Заложенные в них теоретические принципы иногда представлены в виде моделей, теоретических систем, призванных помочь изучению и пониманию.
    Динамический подход постулирует наличие в психике направленных психических "сил", каждая из которых имеет источник, величину и объект. Этот подход дает возможность теоретических рассуждений о побуждении и конфликте (например, между инстинктивными влечениями и ограничениями).
    Экономический подход предполагает распределение в психическом аппарате психической энергии, для рассмотрения чего предлагаются теоретические рассуждения о возбуждении и формах и природе разрядки. Существенными для данного подхода являются представления о количестве и сущности энергий, порогах, законах аккумуляции и разрядки. Этот подход приводит нас также к мысли о том, что внутри психики действуют и отличные от интенциональности законы.
    Структурный подход постулирует, что повторяющиеся и стойкие психические феномены обретают в психике более или менее организованную репрезентацию и что можно охарактеризовать природу этих репрезентаций. Они включают черты характера, защиты, навыки, моральные нормы, установки, интересы, воспоминания, идеалы. Первоначальная модель Фрейда, называемая топографической, состояла из трех систем: сознательного, предсознательного и бессознательного. Феноменологию сознательного и бессознательного он рассматривал как релевантную идеации и эмоциям, находившимся в центре клинических интересов и теоретических построений того времени. Вследствие теоретической ограниченности и противоречивости этой модели Фрейд в 1923 году предложил трехкомпонентную модель. Фрейд постулировал, что изначально энергетическое Оно борется с исполнительным органом, Я, которое помимо уравновешения влечений Оно и внешней реальности вынуждено обманывать напряжения, исходящие из Сверх-Я, хранилища и выражения совести и идеалов.
    За трехкомпонентной моделью последовали, но не отменили ее, другие модели. В одной из них, которую можно обозначить как суперординатное Я, внимание фокусируется на Я как на главном исполнительном и адаптивном органе. Сторонниками этой модели были Анна Фрейд, Хайнц Гартманн, Эрнст Крис, Рудольф Лёвенштейн, Давид Рапапорт и Эрик Эриксон, работы которых послужили развитию общей психологии. В модели Мелани Кляйн постулируется наличие очень ранних патологических структур, которые персонализируются и приписываются себе или другим спутанными и деструктивными способами. В теории объектных отношений утверждается многообразие примитивных ядер Самости, которые, в силу своей патологической природы, не интегрируются в единую связную и упорядоченную систему. В психологии Самости Кохута функционирование и связность постоянной "биполярной Самости" подвергаются угрозе из-за недостаточной структурированности, проистекающей из детских переживаний, которые вызваны взаимодействием с патологически разочаровывающими и неэмпатическими фигурами родителей.
    Генетический подход обеспечивает концептуализацию временных параметров интрапсихических феноменов. Главное внимание уделяется прогрессивному развитию от младенчества до взрослого возраста; при этом считается, что понимание психики взрослого невозможно без знания фактов и обстоятельств его детства. Не менее важно и то, что генетический подход обеспечивает возможность концептуализации регрессивных феноменов, а также оценку настоящего и будущих перспектив индивида.
    Адаптивный подход предполагает изучение межличностных и социальных феноменов, влияющих на психику индивида или испытывающих влияние с ее стороны.
    Кроме пяти вышеупомянутых подходов существует множество допущений, распространенных столь широко, что их не выделяют в отдельные подходы, а рассматривают внутри названных. Назначение метапсихологии прежде всего состоит в построении такой теории психики, в которой человек рассматривается как биопсихическая целостность, как существо, овладевающее внутренней и внешней средой на основе данных ему и развивающихся способностей и при этом борющееся со своим животным началом. Система должна давать картину психологически детерминированных психических феноменов, противопоставляя их тем, что возникают случайно или на основе биологических или физических законов; она должна строиться, последовательно ориентируясь на принципы каузальной логики, а не телеологии. Она должна допускать множественное причинное объяснение, действуя путем конвергенции или дивергенции относительно данного элемента. Закономерности и параметры должны быть, по сути, безличны; личные рассуждения уместны на уровне, близком к наблюдениям или клиническому теоретизированию.
    Фрейд рассматривал свои теории как своего рода концептуальные "строительные леса", подлежащие перестройке в соответствии с новыми наблюдениями и дедуктивными заключениями. Несмотря на противоречивость, отчасти вследствие отдаленности от клинических наблюдений, метапсихология рассматривается большинством аналитиков как необходимая, полезная и гибкая теоретическая система.
    \
    Лит.: [221, 303, 710, 853]

    Словарь психоаналитических терминов и понятий > метапсихология

  • 20 машинная имитация

    1. simulation

     

    машинная имитация
    имитация на компьютере

    Экспериментальный метод изучения экономики с помощью электронной вычислительной техники. (В литературе часто в том же смысле применяется термин «имитационное моделирование«, однако, по-видимому, лучше разделить значения: моделирование есть разработка, конструирование модели некоторого объекта для его исследования, а имитация — один из возможных способов использования модели). Для имитации формируется имитационная система, включающая имитационную модель, а также программное обеспечение. В машину вводятся необходимые данные и ведется наблюдение за тем, как изменяются интересующие исследователя показатели; они подвергаются анализу, в частности, статистической обработке данных. С одной стороны, имитация применяется в тех случаях, когда модель (а значит, отражаемые ею система, процесс, явление) слишком сложна, чтобы можно было использовать аналитические методы решения. Для многих проблем управления и экономики такая ситуация неизбежна: например, даже столь отработанные методы, как линейное программирование, в ряде случаев слишком сильно огрубляют действительность, чтобы по полученным решениям можно было делать обоснованные выводы. А если изучаемые процессы имеют нелинейный характер и еще осложнены разного рода вероятностными характеристиками, то вопрос об аналитическом решении вообще не возникает. Сам выбор между имитационным (численным) или аналитическим решением той или иной экономической задачи не всегда легкая проблема. С другой стороны, имитация применяется тогда, когда реальный экономический эксперимент по тем или иным соображениям невозможен или слишком сложен. Тогда она выступает в качестве замены такого эксперимента. Но еще более ценна ее роль как предварительного этапа, «прикидки», которая помогает принять решение о необходимости и возможности проведения самого реального эксперимента. С помощью статической имитации можно выявить, при каких сочетаниях экзогенных (вводимых) факторов достигается оптимальный результат изучаемого процесса, установить относительное значение тех или иных факторов. Это полезно, например, при изучении различных методов и средств экономического стимулирования на производстве. М.и. в форме проигрывания динамических моделей (динамической имитации) применяется также в прогнозировании,. С его помощью изучают возможные последствия крупных структурных сдвигов в экономике, внедрения важнейших научно-технических достижений, принятия плановых решений. Если имитация организуется в форме диалога человека и машины, то у экспериментатора появляется возможность, анализируя на ходу промежуточные результаты, менять те или иные управляющие параметры и тем самым — направление изучаемого процесса. В последнее время широко применяется имитация экономических процессов, в которых сталкиваются различные интересы типа конкуренции на рынке. При этом управляют «проигрыванием» люди, принимающие по ходу деловой игры те или иные решения, например: «снизить цены», «увеличить или уменьшить выпуск продукции» и т.д., и ЭВМ показывает, у кого из «конкурирующих» сторон дело идет лучше, у кого — хуже (см. также Деловые игры, Олигопольные эксперименты). Таким образом, машинное имитирование экономических процессов — это, по существу эксперимент, но не в реальных, а в искусственных условиях. Для повышения его эффективости разрабатываются методы планирования эксперимента, проверки имитационной модели (см. Верификация моделей, Валидация модели), методы анализа функции отклика и т.д.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > машинная имитация

См. также в других словарях:

  • ПАРАМЕТРЫ МОДЕЛИ ЭКОСИСТЕМЫ — основные элементы математической модели экосистемы, представляющие собой константы математических уравнений. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 …   Экологический словарь

  • Модели рассеивания примеси — Модели рассеивания примеси  математические модели распространения примесей в атмосфере. Содержание 1 Гауссовы модели 1.1 Нестационарная Гауссова модель …   Википедия

  • МОДЕЛИ ВОСПРОИЗВОДСТВА НАСЕЛЕНИЯ — МОДЕЛИ ВОСПРОИЗВОДСТВА НАСЕЛЕНИЯ, описывают процесс возобновления поколений; класс моделей демографических. Устанавливают связь между числ. и возрастной структурой населения, с одной стороны, и режимом рождаемости и порядком вымирания с другой;… …   Демографический энциклопедический словарь

  • Модели (в экономике) — Модели в экономике используются начиная с 18 в. В «Экономических таблицах» Ф. Кенэ, которые К. Маркс назвал идеей «...бесспорно самой гениальной из всех, какие только выдвинула до сего времени политическая экономия» (Маркс К. и Энгельс Ф., Соч.,… …   Большая советская энциклопедия

  • ПАРАМЕТРЫ И КАТЕГОРИИ КОНТЕНТ-АНАЛИЗА — основные элементы категориальной модели предмета контент анализа (см.). Параметры анализа представляют предмет анализа (исследования) в наиболее общем виде. Вместе с тем разработка параметров предмета анализа является начальной точкой построения… …   Российская социологическая энциклопедия

  • Параметры испытаний — Тип блюда: Категория: Продукты: Рецепт приготовления …   Энциклопедия кулинарных рецептов

  • Модели — I Модели         в биологии применяются для моделирования (См. Моделирование) биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно системном, организменном и популяционно …   Большая советская энциклопедия

  • Модели СМК двухступенчатые — I. Коммуникативная модель Каца и Лазарсфельда. Амер. социологи Э. Кац и П. Ф. Лазарсфельд (E. Katz, P. F. Lazarsfeld) предложили двухступенчатую модель, рассматривавшую два плана О. межличностный и социальный. По мнению авторов, СМК не столько… …   Психология общения. Энциклопедический словарь

  • параметры, настраиваемые при тепловизионной съемке — 3.12 параметры, настраиваемые при тепловизионной съемке: Параметры, к которым в зависимости от модели тепловизора могут относиться коэффициент излучения, коэффициент пропускания атмосферы, температура отраженного излучения, температура… …   Словарь-справочник терминов нормативно-технической документации

  • МОДЕЛИ КОВАРИАНТНЫЕ — (Covariant models). Математические модели, содержащие в качестве независимых переменных как классификационные, так и регрессионные эффекты (параметры) …   Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

  • Модели СМК: ранжирование — Осн. идея теории ранжирования обществ. (чаще всего полит.) событий в сознании индивида средствами массовой коммуникации (agenda setting) заключается в том, что существует устойчивая связь между особенностями подачи сюжетов в новостях и степенью… …   Психология общения. Энциклопедический словарь

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»